- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources6
- Resource Type
-
0005100000000000
- More
- Availability
-
60
- Author / Contributor
- Filter by Author / Creator
-
-
Di, Qiwei (6)
-
Gu, Quanquan (6)
-
Farnoud, Farzad (4)
-
Jin, Tao (4)
-
Wu, Yue (4)
-
Zhao, Heyang (3)
-
He, Jiafan (2)
-
Lou, Hao (2)
-
Zhou, Dongruo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Di, Qiwei; Zhao, Heyang; He, Jiafan; Gu, Quanquan (, International Conference on Learning Representations)
-
Di, Qiwei; Jin, Tao; Wu, Yue; Zhao, Heyang; Farnoud, Farzad; Gu, Quanquan (, 12th International Conference on Learning Representations (ICLR))
-
Di, Qiwei; Jin, Tao; Wu, Yue; Zhao, Heyang; Farnoud, Farzad; Gu, Quanquan (, ICLR)Dueling bandits is a prominent framework for decision-making involving preferential feedback, a valuable feature that fits various applications involving human interaction, such as ranking, information retrieval, and recommendation systems. While substantial efforts have been made to minimize the cumulative regret in dueling bandits, a notable gap in the current research is the absence of regret bounds that account for the inherent uncertainty in pairwise comparisons between the dueling arms. Intuitively, greater uncertainty suggests a higher level of difficulty in the problem. To bridge this gap, this paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM). We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $$\tilde O\big(d\sqrt{\sum_{t=1}^T\sigma_t^2} + d\big)$$, where $$\sigma_t$$ is the variance of the pairwise comparison in round $$t$$, $$d$$ is the dimension of the context vectors, and $$T$$ is the time horizon. Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $$\tilde O(d)$$ regret. We perform empirical experiments on synthetic data to confirm the advantage of our method over previous variance-agnostic algorithms.more » « less
-
Wu, Yue; Jin, Tao; Di, Qiwei; Lou, Hao; Farnoud, Farzad; Gu, Quanquan (, Proc. ICML 2024)
-
Di, Qiwei; He, Jiafan; Zhou, Dongruo; Gu, Quanquan (, International Conference on Machine Learning (ICML))
An official website of the United States government

Full Text Available